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Waves Guided by Conductive Strips Above a
Periodically Perforated Ground Plane

BARRY J. RUBIN, MEMBER, IEEE, AND HENRY L. BERTONI, SENIOR MEMBER, IEEE

Abstract —This paper considers the propagation of waves along an array
of conductive strips situated above a periodically perforated conductive
plane. Each conductor has zero thickness and finite sheet resistance, and
the dielectric is homogeneous. The surface current density on the conduc-
fors is approximated by a finite number of current elements having rooftop
spatial dependence. The transverse electric field is expressed in terms of
the current, and the electric field boundary condition is satisfied in an
integral sense over the conductors. This generates a matrix equation whose
solution gives the dispersion curve relating the propagation constant to
frequency, as well as the current distribution.

The simulation results are used to obtain equivalent transmission-line
parameters applicable to printed circuit boards found in high-performance
computers. A characteristic impedance is defined and it is shown that, with
proper interpretation, the uniform transmission-line equations for propaga-
tion constant and characteristic impedance apply to such computer packages.
The coupling between adjacent strips is calculated, and the effect of finite
resistivity discussed.

1. INTRODUCTION

RANSMISSION: LINES in the form of conductive
strips (signal lines) embedded in a dielectric and
sandwiched between conductive planes are used in high-
performance computers to carry signals between in-
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tegrated-circuit chips. Often, many layers of conductor and
dielectric are integrated into a compact package or printed
circuit board [1], and may require interconnections be-
tween signal lines located on different layers. Arrays of
holes are therefore made in the conducting planes and
dielectric so that conductive elements can be inserted to
electrically connect signal lines situated on different layers.
The resulting transmission-line structure is, then, an array
of signal lines situated between and insulated from ground
planes which are perforated periodically with apertures.

One might assume that the structure can be approxi-
mated as a uniform transmission line. By calculating the
appropriate capacitance, inductance, and resistance,
through available means 2], [3], the propagation character-
istics could then be determined. However, the validity of
such an approximation must remain questionable until the
structure is accurately analyzed.

In this paper, we present a numerical analysis based on
rigorous electromagnetic theory for propagation along an
array of signal lines situated above a single perforated
ground plane in a homogeneous’ dielectric. We chose to
consider an array of signal lines because the composite
structure has two-dimensional periodicity and previous re-
sults can be applied. However, if adjacent signal lines are
sufficiently separated to reduce their interaction, the result-
ing current distribution approaches that for an isolated
signal line situated above the ground plane. Numerical
results are given for the propagation constant, characteris-
tic impedance, and the coupling between adjacent lines.
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Fig. 1. Array of signal lines above a periodically perforated ground

plane. (a) Isometric view. (b) Unit cell.

II. EXPANSION OF THE SIGNAL LINE AND GROUND-PLANE
CURRENTS IN TERMS OF ROOFTOP
FuNCTIONS

The structure considered is shown in Fig. 1(a). The
ground plane, located at z =-0, is perforated with rectangu-
lar apertures having dimensions ¢ and b; the signal lines,
having width w, are situated a height 4 above. All conduc-
tors have zero thickness and finite sheet resistance R . The
unit cell for the structure is shown in Fig. 1(b), where the
periodicities in the x and y directions are d, and d,,
respectively.

Consistent with computer applications, the signal lines
lie directly above the continuous portion of the ground
plane and not over the apertures. The entire guiding struc-
ture is embedded in a homogeneous medium having free-
space dielectric constant ;. In what follows, k,, A, and 7,
are the wave number, wavelength, and wave impedance
in the dielectric, respectively, and the time dependency is
exp (jwt), where w is the angular frequency.

Since the structure has two-dimensional periodicity, the
Floquet [4] condition requires the current densities on both
the ground plane and signal line to be periodic functions of
x and y. For propagation along the x direction, these
current densities are multiplied by the same factor
exp(— jk,x), where k, is the propagation constant. When
the surface current density J, is approximated by a finite
number of current elements that are localized to rectangu-
lar regions within the unit cell, the x-directed current
density J,, can be expressed as a superposition of elemental
currents having the form

Lo R (x—x4 y—y,)exp(— jk,x)

where I, is a complex coefficient and R (x — x,, ¥y — ¥,)
is a periodic function centered at (x,, y,, z,) that is non-
zero only within a rectangular region or subsection of the
unit cell. Furthermore, if we assume that P such elements
are required to represent J,,, then the y-directed current
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density J,, can similarly be represented by Q elements
having the form

IyaRy(x “Xpyar VT yP+a)exp(_ jkx'x)

where [,, and R,(x — Xp_. 4 ¥ — Vpy,) are the coefficient
and subsectional functions corresponding to the ath ele-
ment of J,,, centered at (Xp., 45 Vpyas Zpia)-

The functions R, and R, must satisfy two requirements.
Firstly, the approximate current density must be consistent
with the edge condition [5], which requires the current that
flows along an edge in a strip of conductor to be finite, and
the current that flows normally to approach zero near the
edge. Secondly, the variation of the surface current must be
sufficiently smooth so that its divergence does not yield
any artificial (fictitious) charge. A set of functions meeting
these requirements are the rooftop functions employed by
Glisson and Wilton in determining the field scattered by
an isolated plate [6] and by Rubin and Bertoni in determin-
ing the current distribution and reflection coefficient when
a plane perforated periodically with apertures is il-
luminated by a plane wave [7], [8].

The rooftop functions have triangular dependency in
one direction and pulse dependency in the other, and are
given by

R, (x,y)=¢,(x)p, (»)
R, (x,y)=p,.(x)q.(»)

where ¢.(£) is the triangle function defined as

1 &l
q,(§) = T’

0, elsewhere

—r<ésT

and p_ (&) is the pulse function defined as

T T

1, - <é<x

AGE 273
0, elsewhere.

The parameters 7, and 7, define the sizes of the subsections.

Fig. 2 shows how rooftop functions can be used to
represent the current that flows in the ground plane. The
subsections for the x-directed current elements have di-
mensions 27, and 7, in the x and y directions, respectively,
while the subsections for the y-directed current elements
have dimensions 7, and 27,. The centers (x,, y,) of the
subsections used to represent J, are indicated in Fig. 2 by
the dots located on lines parallel to y. The subsections used
to represent J, in Fig. 2 are similarly centered at
(Xpia» Ypio)» and are indicated by the dots located on
lines parallel to x. Because the currents on opposite edges
of the unit cell are related via the Floquet condition,
independent current coefficients 7, ,, I, are defined only at
half of the points on the boundary of the unit cell. In Fig.
2, dots have been omitted from the redundant points on
the boundary. For the subsections of the ground plane
shown, there are P =30 coefficients I ,, and an equal
number @ coefficients /.. The subsections overlap so that
each patch having area 7,7, may have as many as four
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Fig. 2. Rooftop approximation for the current density on the ground
plane indicating subsections of the unit cell and current elements used
in the expansion of J;, and J,.

rooftop functions overlaying it. Aside from the exponential
factor exp(— jk,x), J,, is continuous piecewise-linear in
the x direction and stepwise-constant in the y direction,
while J;, is continuous piecewise-linear in the y direction
and stepwise-constant in the x direction. The signal line’s
current density can similarly be approximated through
rooftop functions, so that the current density in either the
signal line or the ground plane can be expressed as

Js(x’y’z)z{

Q
+ E Iyasz,zm,mRy(x T Xpygr VT yP+a)yO} CXp(— jkxx)

(1

where 8, , is the Kronecker delta. The current on the
ground plane corresponds to those elemental currents for
which z, =0, while the current on the signal line corre-
sponds to those elemental currents for which z, = h.

IIL

1t has been shown [7], {8] that the transverse component
of the electric field E, produced by the current density (1)
in the plane z = 0 can be expressed in component form as

Z xazzR (x~xa>y_yu)x0

a=1

THE EIGENVALUE PROBLEM

—_ o
Ex_ 2k02”‘
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ynm
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2am
+ TyPﬂx

znm  g=1
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f27n 2am
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EXp [_ j(kanx + kymy + kznmlzl)] (2)

where

P S .

> O 4
anm = (ké - 1/2
and &, and & ,, are the Fourier series coefficients of
the functions R (x y) and R, (x, y), respectively. In order
to accommodate currents located in planes other than
z =0, we replace the factor |z| in (2) appropriately by the
factors |z — z,| or |z~ zp,,) With this modification, (2)
becomes valid for any current distribution represented by
(1). The total electric field is, then, obtained by superposi-
tion over the planes containing the current.
We now apply the electric field boundary condition

E—JR,=0

k2, ~k2,)

®3)

to generate a finite dimension matrix equation having the
P + Q current coefficients I, and I, as the unknowns. As
described in [7] and [8], satisfying the boundary condition
at isolated points leads to numerical difficulties since it
results in matrix elements which are not absolutely conver-
gent. Instead, the x component of (3) is integrated over P
line segments of length 7, parallel to the x axis and
centered at each of the points (x,, y,, z,)- Two such seg-
ments along x are indicated by heavy lines in Fig. 2.
Similarly, the y component of (3) is integrated over Q line
segments of length 7, parallel to the y axis and centered at
each of the points (Xp., 4» Vp+a» Zp+a)- One such segment is
indicated in Fig. 2. Mathematically, the boundary condi-
tions take the form

/‘xp+1a/2(Ex_R

dx=0atz=1z5,y=y,
=1/ ) BY =

sYsx

,8=1,2,"' ’P
. 2
Vprpt T/ (E Rsty)dy=0atz:zp+p’x=xp+p’
Ypapg— Th/2

B=12,---,0. (4)

Substituting (1) and (2) into (4), and then interchanging the
orders of summation and the order of summation and
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integration we obtain and F} is the complex conjugate of F,.
The set of equations (5) can be represented as
Z I ( xxofS RsF;caB)+ Z ya xyaB 0’ Z!=O (8)
a=1
B=1,2,---,P where
P Q |
Zxxa - RSF « Zx Q,
leazyxaﬁ+ Z ( 'yyafS R B)=O’ 7z = __.__B___x_lg_:____{ﬁ____ (9)
a=1 a=l Zyxap | Zyyap ~ ReFyup
B=1’2""’Q (5) and
where
T .. v
kO xn I'= [le’IxZ’ ’ xP(Iyl’ y2 ’IyQ]' (10)
Zixap = 2k0 Z:'n Sa ( xn2 ) K m . P For (8) to have a nontrivial solution, it is necessary that
-exp{j[—:?ﬁ(x,,—xﬂ) det Z=0. (11)
' This is the dispersion equation which relates k, to ». Once
+ m( v = y)—k — |]} k. has been determined, it is substituted back into the Z
o RS Tanm A matrix so that the eigenvector J and hence the current
. ko Kk density J, can be found. Numerical examples are discussed
=0 _g | xnym . .
Zyyop = 2, nz:,n Sa(kxn 5 ) k. R ym in Section VI,
San IV. CHARACTERISTIC IMPEDANCE
*€Xp { J [ 4, (Xpra=—Xg) The presence of apertures and/or resistance precludes
the possibility of TEM propagation in the structure of Fig.
2'nm 1. However, at the frequencies associated with the signal
+— (y ~ ¥8) = KumlZp 10— 24l \
Pra B znml“P+a OB waveforms found in such computer structures (kod, <0.1),
k. k the wave supported will be nearly TEM. As such, only a
Zyop = Z Sa ( ) 2R m small component of magnetic field exists in the direction of
Konm propagation, i.e., the line integral of the electric field
dan between the signal line and ground plane in any plane
-€Xp {j[—j‘ (xo—x P+B) x = constant is nearly independent of path. We can there-
! fore define a potential difference V(x) between the signal
277m line and ground plane as
d (ya yP+,B)_kznmlza—ZP+BI]} h
V(x)=—["E.(x,y,2) dz (12)
k3 — ko 0
Zyyap = 2 k Z Sa ( ym )" kK R ym where E, is the z component of the electric field. Since the
0n e transmission lines carry signals between computer circuits,
2an ) and since these circuits are characterized by their
"exXp d 7 (Xpia=Xpip current-voltage dependencies, it is convenient to define the
characteristic impedance Z; as
277m
+— (yP+a J’P+ﬁ) KenmlZpsa— ZP+B']} Zy=V(x)/I:(x) (13)
(6) where the total current that flows through the signal line 7.
is given by
E _,={Fd + Fi6, +F6, .10, 8
rap = { 30,; lfa;xa.xp LN LT - 1T=f”2Jsx(z=h)dy. (14)
Fop = {ZSYHMHB + §8Tb+YP+wJ’P+B In the region which excludes the conductors, the diver-
1 gence of the electric field is zero so that E,, E,, and E, are
+ §8y}’+a»7b+YP+ﬂ} 6XP+avxP+ﬂ62P+a,Zp+p' (7) related by
In (6), Sa(¢)=sin(&)/¢ is the sampling function, and in 9E, _ _(9E, 95, (15)
) dz dx dy
F,= 1 Sa( L -2 )+ —Sa ( kxltl) If we substitute the generalized form of (2) into (15), and
2 *2 4 4 integrate both sides of (15) with respect to z, realizing that
F= 1 [ex ( " ) ex ( %l ) Sa( P )] E, has no component constant in z, we obtain E,. The
Y2k, Pl /%7 Pl /%y x4 result, after appropriate interchanges in the orders of sum-
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mation, integration, and differentiation is

P
Ez=—1]—0— Y L.sgn(z—z,) Y G
2k0 X a . m xnmao

a=1

-exp( - jkznmlz - Za')

Qo
+ Z Iyusgn(Z_ZP+a) Z Gynma
n,m

a=1

'eXP(—sznm|z—zp+al)}exp(‘J'kxx) (16)

where

A 2an 2m
Gxnma=kxn@’vxnmexp{1[*—d (Xa=x)+ == (y.,-y)]}
1 2

.| 2an
Gynma = kquﬂ/ynmexp{] [—El_(xP+a - X)

2am

2G|} (0
2
and sgn(§) is defined as
1, £>0

Sgn(£)={—1, £<0.

We now substitute (1) into (14), (16) into (12), and perform
the integrations indicated. From (13) we find

7 P
. o
Z()=]_ik_0 agllxa(80,zﬂ_8h,zﬂ)
l—exp —jkznmh
: Z Gxnma 5{ . )
(Y

+ Z Iya(ao,z,,+,,—,6h,2p+,,)

l_exp(— jkznmh)
' Z Gynma k
n,m

znm

P -1
1 Ty Z Ixash,zaq'r‘,('x _xa)} . (18)
a=1

In (18), I,, and I, are the current coefficients obtained
through solving the eigenvalue problem (8), and ¢, is the
triangle function previously defined.

V. MobE COUPLING BETWEEN ADJACENT SIGNAL
LINES

1t is well known that a system composed of two coupled
waveguides supports two distinct propagation modes [9]. A
wave traveling along one guide will transfer power to the
other guide and may excite positively and negatively prop-
agating waves. Contradirectional coupling [10], involves the
transfer of power between modes traveling in opposite
directions. With respect to the structure of Fig. 1, this

~
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Fig. 3. Guiding structure used in determining the side-by-side coupling.
(a) Isometric view. (b) Unit cell.

coupling would not significantly differ if the apertures are
merged in the x direction, so that the ground plane be-
comes an array of x-directed strips and the transmission
line becomes TEM. Since contradirectional coupling in
TEM structures has already been considered [11], we will
focus on codirectional coupling [10], 'which involves the
transfer of power between modes traveling in the same
direction. This type of coupling is absent in TEM struc-
tures.

For two identical waveguides, the power is periodically
exchanged between the waveguides and this exchange oc-
curs over a distance / [9] given by

Ak I=m (19)
where Ak, is the difference between the coupled system’s
two propagation constants. In connection with the struc-
ture of Fig. 1, these two constants are associated with
waves having even and odd symmetry about the plane
midway between the lines.

A. Side-by-Side Coupling

If we modify the structure of Fig. 1 by removing every
third line, the coupling between nonadjacent lines will be
negligible for small % /d,. Then, the wave in the unit cell
will be almost identical to that in a structure having only
two adjacent lines. Fig. 3 shows the resulting structure and
unit cell.

To get the coupling length /, we find even-mode (where
the signal lines carry current in the same direction) and
odd-mode (where the lines carry current in opposite direc-
tions) solutions to (11), and then substitute the resulting
difference in propagation constants Ak, into (19).

In odd-mode propagation, symmetry allows a perfectly
conducting plane to be placed equally distant between the
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Fig. 4. Guiding structure used in determining the through-aperture cou-
pling. (a) Isometric view. (b) Unit cefl.

signal lines without disturbing the field. This plane carries
some current that would otherwise flow in the ground
plane, decreasing the perturbation caused by the apertures,
and causing the wave to be more nearly TEM. Thus, the
odd-mode propagation constant will be closer to &k, than
the even-mode constant.

B. Through-Aperture Coupling

We now remove every other line in the structure of Fig,
1, and then place another identical signal-line array a
distance h below the ground plane (Fig. 4). As long as
h /d, is sufficiently small, the wave supported within the
unit cell closely resembles that supported by two signal
lines situated on opposite sides of the ground plane.

To find [ for this through-aperture coupling structure, we
again find even- and odd-mode solutions to (11) and
substitute the resulting Ak, into (19). By symmetry, no
current flows in the ground plane when the signal lines
carry oppositely directed currents. The resulting mode is
pure TEM since the ground plane can be removed without
disturbing the field. Thus, the odd-mode propagation con-
stant in perfectly conducting structures is k,, and need not
be calculated through (11).

VI. NUMERICAL RESULTS

In solving the eigenvalue problem (8), the solution &, to
the determinant equation (11) is first found by a Newton
search [12]. Starting with some initial guess k{", we iterate
according to
det’ Z
1'(z)
where the superscript i refers to the ith value of the
parameter, and f'(Z) is the finite difference approximation
of the determinant’s derivative at k. The iteration is

k)(cl+l)=k)(ci)_ (20)
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Unit Celt

Fig. 5. Current distribution in the signal line and ground plane over half
the unit cell of the guiding structure of Fig. 1. (R;=0, w=0.25 cm,
h=05cm a=b=075cm,d|=d,=1.0cm, ko=0.0001 cm™ !, N =38,
M=16)

terminated when the difference between k(" and A{* Y is
sufficiently small—generally 10> k,. When solving (8)
for the eigenvector, the first element of [, I, was assumed
to have unit amplitude and zero phase. In obtaining the Z
matrix (9), we truncate the infinite series in (6) at [n|< N
and |m| < M where

(1)

This choice is adequate to give accurate results. Because
the Newton search requires repeated evaluation of the Z
matrix, the choice of N and M has a major influence on the
overall computation time.

A. Current Distribution

Fig. 5 shows the current distribution in the structure of
Fig. 1, when R, =0, h=0.5 cm, w=0.25 cm, a=b = 0.75
cm, d,=d, =10 cm, 7,=0.125 cm, 7, =0.0625 cm, and
ky=0.0001 cm™'. By symmetry, identical current exists in
each half of the umit cell, so only the shaded half is
considered.

For this case, the currents are almost entirely real. The
x-directed currents in the signal line and ground plane flow
in opposite directions. Current crowds along the signal-line
edge, displaying the well-known edge effect for perfect
conductors, and flows around the aperture in the ground
plane. The y-directed current is nearly zero in both the
signal line and the ground plane channel defined by
the signal-line’s projection onto that plane. If we convert
the current density into a current by multiplying by 7, for
x-directed currents and by 7, for y-directed currents, we
find the net current which flows into any 7,7, patch to be
negligible. All these results are consistent with current flow
in parallel plate type TEM transmission lines.

Fig. 6 gives the current distribution for the same struc-
ture at k, = 0.0001 cm™ ! except the sheet resistance is 0.25
2 /0. For such a high sheet resistance and low frequency,
the current flow is essentially determined by the resistance,
and again is almost entirely real. The x-directed current is
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Unit Cell

Fig. 6. Current distribution in the signal line and ground plane over haif
the unit cell of the guiding structure of Fig. 1. (R,=025 Q/0O,
w=0.25cm,h=05cm,a=b=0.75cm,d,=d,=10cm, k;=0.0001
em™ L, N=8 M=16)
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Fig. 7. Guiding structure of Fig. 1 when every other signal line is
removed. (a) Isometric view. (b) Unit cell.

uniform across the signal line. The current in the ground
plane is more confined to the channel, not spreading out as
much into the conductor connecting the channels of adjac-
ent unit cells (called cross-links). For example, the mini-
mum current density in the cross-link is 0.17 when R, =0,
but only 0.01 when R, = 0.25 Q /0.

B. Propagation Characteristics

To determine the propagation characteristics of an iso-
lated signal line above the ground plane, we consider a
modified structure where every other signal line has been
removed (Fig. 7(2)). The corresponding unit cell (Fig. 7(b))
contains one signal line but two apertures so that d, is
doubled.

Fig. 8 shows the dispersion curve when w, h, a, b, 7,, 7,
and d, are as previously given, but R, =0 and d, = 2.0 cm.
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Fig. 9. Real and imaginary parts of k, as a function of ky for the
guiding structure of Fig. 7. (w =025 cm, h= 0.5 cm, a = b =10.75 cm,
d,=10cm,d,=20cm,7,=0.125 cm, 7, = 0.0625 cm, N =8, M = 32.)

The ratio of group velocity v, to the speed of light in the
dielectric c is given by the curve’s slope. For small £, v, /¢
is a constant 0.9606, but decreases to zero for k. d, =7, as
expected for periodic structures.

Fig. 9 gives the real and imaginary parts of k, as a
function of k, when R, is 0.25 £ /0. For comparison, we
also plot the propagation constant calculated from the
well-known formula valid for a resistive transmission line
having lossless dielectric

k,=[(wL—- jR)wC]">. (22)

In (22), L and C, which are per unit length values of
capacitance and inductance, are taken to be those values
which give the same low-frequency propagation constant
(k,=1.0352 k,) and characteristic impedance (216 )
found for the case R, = 0; R, the per unit length resistance,
is taken to be the dc resistance in the path that includes the
signal line and ground plane. The values for L and C are
7.44 nh/cm and 0.16 pf/cm, respectively, while R is ap-
proximated as 1.5 €/cm. As seen from the figure, (22)
accurately gives the low frequency propagation constant
for resistive conductors.

The characteristic impedance, calculated at the center of
the signal line using (18), is plotted versus k, in Fig. 10 for
R, =0 and 0.25 /0. For comparison, we also plot the
equation

Zo=[(R+ joL)/jwC]"? (23)
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Fig. 10. Characteristic impedance versus k for the guiding structure of

Fig. 7.(w=025cm, h=05cm,a=b=0.75cm,d, =10 cm, d, = 2.0
cm, 7, = 0.125 cm, 7, = 0.0625 cm, N = 8§, M =32))
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Fig. 11. Characteristic impedance as a function of signal line width-to-

height ratio w/h (R, =0, kg = 0.001 cm™ ),

where R, L, and C have already been calculated. As seen
from Fig. 10, (23) accurately describes the impedance for
kod, <0.1,

The dependence of the impedance at low frequency on
the aspect ratio w/h is shown in Fig, 11. The curves are
obtained by holding w fixed at 0.25 cm and varying 4. For
comparison, the impedance of an isolated signal line above
a ground plane having no apertures, and that of an isolated
signal line a height 4 above a second such line have been
plotted. The impedance for this first nonperiodic structure
is given in [13], while the impedance for the second is
obtained from [13] using image theory. As expected, the
impedance of the periodic structure falls between the other
two curves. However, as w/h falls below (.25, the coupling
between adjacent signal lines significantly influences Z,
and the curve displays a sharp up-turn.

The influence of adjacent lines can also be observed by
replacing the lines absent from the structure of Fig. 7.
Although the resulting dispersion and impedance curves
display similar behavior to those in Fig. 8 and Fig. 9, the
group velocity and impedance when R, =0 and k,d, <1
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TABLEI
NORMALIZED COUPLING LENGTH AT k= 0,001 cm™!

Unit | kx/ko (Even | ky/kg {Odd
Cell Mode} Mode}

Side-By-Side (a) 10420 10039
Through-Aperture | (b) 10663 10000

R;=0,w=025cem,A=05cm,a=b=075cm,d,=1.0cm, 7, =0.125
cm, 7, = 0.0625 cm, N = 8.

(a) Unit cell of Fig. 3. (d, =3.0 cm, M = 48).

(b) Unit cell of Fig. 4. (d, =2.0 cm, M = 32).

2o

00381 1312
00653 766

Coupling BDkylkg

are 0.9505 ¢ and 290 Q, respectively, as opposed to 0.9606 ¢
and 216 § for the structure of Fig. 7.

In order to determine the sensitivity of the results to the
size of the subsections, 7, and 7, were reduced by a factor
of two (increasing the corresponding number of current
elements, P + Q, by more than a factor of four). For the
structure considered in Fig. 5, with A varied between 0.1
and 1.0 cm, and with & and M still given by (21), we
observed that both &k, and Z, decrease, but by less than 0.3
percent and 4.0 percent, respectively. Thus, the subsection
size used for the structures considered is adequate to give
accurate results.

It is instructive to determine the changes in capacitance
and inductance when the perforated ground plane becomes
unperforated. To do this, we modify the structure consid-
ered in Fig. 8 so that a=0.0 cm and use R; =0, 7,=1.0
cm, N=0, and M = 32. The values of L and C are then
calculated from the resulting values of k, and Z,. We find
at low frequency that the capacitance increases by 6.3
percent but the inductance decreases by 12.2 percent. Thus,
the perforated ground plane acts more like an unperforated
plane electrostatically than it does magnetostatically.

C. Coupling Between Adjacent Signal Lines

The side-by-side and through-aperture coupling lengths
are calculated using the structures of Fig. 3 and Fig. 4 for
R,=0,2=05cm, w=025cm, a=b=0.75 cm, d,=1.0
cm, 7,=0.125 cm, 7, = 0.0625 cm, and k,=0.001 cm™".
The even- and odd-mode propagation constants, shown
normalized in Table I, increase slowly with k, so that they
are valid for kyd; <0.1. The normalized coupling length
for the side-by-side case is 13.12 A, but only 7.66 A, for
the through-aperture case. The greater through-aperture
coupling (smaller / /A ) corresponds to a greater difference
between capacitive and inductive coupling coefficients, k-
and k&, , that exist in the structure [11]. Though not true for
all geometries, the cross-link segments of the ground plane
substantially reduce the capacitive coupling between signal
lines separated by the ground plane, but only modestly
decrease the inductive coupling and thus yield the shorter
value of /.

VII. EXTENSION OF THE METHOD THROUGH

SCALING

In the examples given, all the dimensions were in the
centimeter range, while the relative dielectric constant was
unity. However, in computer applications, the transmission
line dimensions may be in the submillimeter range, and the
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dielectric constant may be several times that of free space.
Appropriate scaling can be used to extend the presented
results to more realistic structures.

If every dimension in the structure scales by the same
factor, and if the relative dielectric constant takes on the
value ¢,, the dispersion relation represented by (5) can be
expressed as

fx(ko\/;dn kxd1)+‘/;Rsf2(kxd1) =0

while the characteristic impedance can be expressed as
1
Zy= Fﬁ(ko\/;dla kxdl)

where f,, f,, and f, are functions of the given variables.
Thus, the dispersion relation will remain satisfied and the
impedance will vary inversely with \/—, if k. dy, 0\/— dy,
and \/_: R, are kept constant.

VIIL

A method employing a rooftop current approximation
was used to find the propagation characteristics and cur-
rent distribution in transmission-line structures consisting
of a signal line above a periodically perforated ground
plane in a homogeneous dielectric. For perfect conductors
at low frequency (k,d, <1.0), the dispersion is small and
the wave velocity is just a few percent less than c. For finite
resistance structures at frequencies such that kq,d, <0.1,
the propagation and attenuation constants, and the imped-
ance, are the same as those of a uniform transmission line
having constant values of R, L, and C.

Codirectional coupling between signal lines was consid-
ered. This coupling was found to be nearly twice as strong
for signal lines situated on opposite sides of the ground
plane (coupling length 7.66 A,) as for adjacent signal lines
situated on the same side of the ground plane (coupling
length 13.12 A ;). These results, however, are valid only for
frequencies such that kyd, < 0.1 and for the specific geom-
etry considered.

‘Although we have considered only square apertures, the

~ method applies to any shape aperture for which the con-
ductor can be subdivided into rectangular subsections.
Apertures with curved boundaries, such as circles, would
have to be approximated by steps. Finally, the approach
used here can easily be extended to handle additional
ground planes.

CONCLUSIONS
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