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Abstract —This paper considers the propagation of waves along an array

of conductive strips situated above a periodbmfly perforated conductive

plane. Each conductor has zero thickness and finite sheet resistance, and

the dielectric is homogeneous. The surface current density on the conduc-

tors is approximated by a finite number of current elements having rooftop

spatial dependence. The transverse electric field is expressed in terms of

the current, and the electric field boundary condition is satisfied in an

integral sense over the conductors. This generates a matrix equation whose

solution gives the dispersion curve relating the propagation constant to

frequency, as well as the current distribution.

The simnfation resutts are used to obtain equivalent transmission-line

parameters applicable to printed circuit boards found in high-performance

computers. A characteristic impedance is defined and it is shown that, with

proper iuterpretation, the uniform transmission-line equations for propaga-

tion constant and characteristic impedance apply to such computer packages.

The coupling between adjacent strips is cafctdated, and the effect of finite

resistivity discussed.

I. INTRODUCTION

T RANSMISSION LINES in the form of conductive

strips (signal lines) embedded in a dielectric and

sandwiched between conductive planes are used in high-

performance computers to carry signals between in-
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tegrated-circuit chips. Often, many layers of conductor and

dielectric are integrated into a compact package or printed

circuit board [1], and may require interconnections be-

tween signal lines located on different layers, Arrays of

holes are therefore made in the conducting planes and

dielectric so that conductive elements can be inserted to

electrically connect signal lines situated on different layers.

The resulting transmission-line structure is, then, an array

of signal lines situated between and insulated from ground

planes which are perforated periodically with apertures.

One might assume that the structure can be approxi-

mated as a uniform transmission line. By calculating the

appropriate capacitance, inductance, and resistance,

through available means [2], [3], the propagation character-

istics could then be determined. However, the validity of

such an approximation must remain questionable until the

structure is accurately analyzed.

In this paper, we present a numerical analysis based on

rigorous electromagnetic theory for propagation along an

array of signal lines situated above a single perforated

ground plane in a homogeneous dielectric. We chose to

consider an array of signal lines because the composite

structure has two-dimensional periodicity and previous re-

sults can be applied. However, if adj scent signal lines are
sufficiently separated to reduce their interaction, the result-

ing current distribution approaches that for an isolated

signal line situated above the ground plane. Numerical

results are given for the propagation constant, characteris-

tic impedance, and the coupling between adjacent lines.
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(a)

Fig. 1. Array of signat lines above a periodically perforated ground

plane. (a) Isometric tiew. (b) Unit cell.

II. EXPANSION OF THE SIGNAL LINE AND GROUND-PLANE

CURRENTS IN TERMS OF ROOFTOP

FUNCTIONS

The structure considered is shown in Fig. l(a). The

ground plane, located at z =.0, is perforated with rectangu-

lar apertures having dimensions a and b; the signal lines,

having width w, are situated a height h above. All conduc-

tors have zero thickness and finite sheet resistance R,. The

unit cell for the structure is shown in Fig. l(b), where the

periodicities in the x and y directions are d, and dz,

respectively.

Consistent with computer applications, the signal lines

lie directly above the continuous portion of the ground

plane and not over the apertures. The entire guiding struc-

ture is embedded in a homogeneous medium having free-

space dielectric constant ~0, In what follows, kO, A ~, and TO

are the wave number, wavelength, and wave impedance

in the dielectric, respectively, and the time dependency is

exp ( jti t ), where o is the angular frequency.

Since the structure has two-dimensional periodicity, the

Floquet [4] condition requires the current densities on both

the ground plane and signal line to be periodic functions of

.x and y. For propagation along the x direction, these

current densities are multiplied by the same factor

exp ( – jkXx), where kx is the propagation constant. When
the surface current density ~ is approximated by a finite
number of current elements that are localized to rectangu-

lar regions within the unit cell, the x-directed current

density .J,Xcan be expressed as a superposition of elemental

currents having the form

IxaRx(.x ‘Xa, Y– Y.)eXP(– jkxx)

where IX. is a complex coefficient and RX(X – x., y – y.)

is a periodic function centered at (x., y., z.) that is non-

zero only within a rectangular region or subsection of the

unit cell. Furthermore, if we assume that P such elements

are required to represent J,X, then the y-directed current

density <Y can similarly be represented by Q elements

having the form

IyaRy(x –Xp+a, Y– b+a)w(- jkxx)

where ZYa and RY(x — XP+~, Y — YP+~ ) are the coefficient

and subsectional functions corresponding to the ath ele-

ment of J~Y, centered at (Xp+a, Yp+., ZP+. ).

The functions RX and RY must satisfy two requirements.

Firstly, the approximate current density must be consistent

with the edge condition [5], which requires the current that

flows along an edge in a strip of conductor to be finite, and

the current that flows normally to approach zero near the

edge. Secondly, the variation of the surface current must be

sufficiently smooth so that its divergence does not yield

any artificial (fictitious) charge. A set of functions meeting

these requirements are the rooftop functions employed by

Glisson and Wilton in determining the field scattered by

an isolated plate [6] and by Rubin and Bertoni in determin-

ing the current distribution and reflection coefficient when

a plane perforated periodically with apertures is il-
luminated by a plane wave [7], [8].

The rooftop functions have triangular dependency in

one direction and pulse dependency in the other, and are

given by

RX(X, y) ‘q,~x)P,,(~)

R,(x, y) =~,a(x)q,,(y)

where q,(~) is the triangle function defined as

[

~_H
97(’$)= 7’ –’<$<’

o, elsewhere

and p,(f) is the pulse function defined as

/ . .

{

~<,&<~
p,(t)= 1’ ‘2

o, elsewhere.

The parameters T. and r~ define the sizes of the subsections.

Fig. 2 shows how rooftop functions can be used to

represent the current that flows in the ground plane. The

subsections for the x-directed current elements have di-

mensions 2 T. and r~ in the x and y directions, respectively,

while the subsections for the y-directed current elements

have dimensions T. and 27~. The centers (x., ya) of the

subsections used to represent J,x are indicated in Fig. 2 by

the dots located on lines parallel toy. The subsections used

to represent J,y in Fig. 2 are similarly centered at

(Xp+a, yp+a), and are indicated by the dots located on

lines parallel to x. Because the currents on opposite edges

of the unit cell are related via the Floquet condition,

independent current coefficients lX., lYa are defined only at

half of the points on the boundary of the unit cell. In Fig.

2, dots have been omitted from the redundant points on

the boundary. For the subsections of the ground plane

shown, there are P = 30 coefficients lX., and an equal

number Q coefficients lY.. The subsections overlap so that
each patch having area Tarb may have as many as four
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Fig. 2. Rooftop approximation for the current density on the ground
plane indicating subsections of the unit cell and current elements used
in the expansion of J,X and J,v.

rooftop functions overlaying it. Aside from the exponential

factor exp ( – jkXx), LX is continuous piecewise-linear in

the x direction and stepwise-constant in the y direction,

while .l,Y is continuous piecewise-linear in the y direction

and stepwise-constant in the x direction. The signal line’s

current density can similarly be approximated through

rooftop functions, so that the current density in either the

signal line or the ground plane can be expressed as

(
P

~(x, y,z)= ~ Ixa8z,,aRx(x –xa, y–ya)xo
~=1

Q

+ x Iya~z,Zp+. y oR (X– Xr+a, Y–Yp+a Y. ew(-jkx~)
~=1

(1)

where 6Z , is the Kronecker delta. The current on the

ground pl&e corresponds to those elemental currents for

which z.= O, while the current on the signal line corre-

sponds to those elemental currents for which z.= h.

111. THE EIGENVALUE PROBLEM

It has been shown [7], [8] that the transverse component

of the electric field E, produced by the current density (1)

in the plane z = O can be expressed in component form as

and

~o~
-{

- i Ixa%xnm
‘Y=–2ko “’m – k=.~ ~=1

[(

2~n 2vm
.exp j ~xa+ ~ym

1 2 )1

●k;–k2 Q

k
‘m ~ Iya%yn~

znm ~’= I

[(

2~n 2vm
.exp j ~xP+a+— d2 yP+cI

1 )1)

“exp [– j(k..x + kY~y + k.~~ Izl)] (2)

where

27rn 2vm
kXn=kX+T, ky.=~

1 2

kz~m = (k: – k:. – k;#2

and 4%X.~ and %Y.. are the Fourier series coefficients of

the functions RX(X, y) and Ry(x, y), respectively. In order

to accommodate currents located in planes other than

z = O, we replace the factor Iz I in (2) appropriately by the

factors lz – Zal or lZ – Zp+al. With this modification, (2)

becomes valid for any current distribution represented by

(l). The total electric field is, then, obtained by superposi-

tion over the planes containing the current.

We now apply the electric field boundary condition

to generate a finite dimension matrix equation having the

P + Q current coefficients lx. and& as the unknowns. As

described in [7] and [8], satisfying the boundary condition

at isolated points leads to numerical difficulties since it

results in matrix elements which are not absolutely conver-

gent. Instead, the x component of (3) is integrated over P

line segments of length r. parallel to the x axis and

centered at each of the points (x., Y., z.). Two such seg-

ments along x are indicated by heavy lines in Fig. 2.

Similarly, the y component of (3) is integrated over Q line

segments of length ~b parallel to they fis ~d centered at
) One such segment iseach of the points (xp+~, YP+~, zp+~ .

indicated in Fig. 2. Mathematically, the boundary condi-

tions take the form

~,_,a,2(Xfl + T./2
EX– R, J,X)dx= Oatz=zP, y=y~,

p=l,2,..., P
- F ~ Iya!$lynm

znm ~=1
J

.vF+,+TtJ/2(EY - R,J,Y) d’ =0 atZ ‘zp+~, x ‘xP+@

YP+~– 7h/2

[(

2nn 2~m
.exp j —d Xp+a +

)1}
/3=1,2,... ,Q. (4)

I
~YP+a

Substituting (1) and (2) into (4), and then interchanging the
.exp [– j(kxnx + kymy + k,~~lzl)] orders of summation and the order of summation and
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,P

(5)

{[
.q) j y(xa-xp)

+ 27rm
@L- Yl?)-kz?zml’a - ‘/31

1}

+ 27rm
-@,.a - Yj3)-bmJ’P+a-’f?l

11

z .3 ~ Sa(ky~~)&~Xn.
‘Xafl 2kOn ~

([
.exp j &( X.- XP+P)

+ 2vm
-@L – ~~+p)–kznmlza– ‘P+BI

D

~b k; – k2
zyya~ = — ~ x ‘“(kY~~) kznmym ‘,?IWI

n,m

{[

“exp j ~(xp+. –xp+~)

+ 2wm
~(Y~+a - .YP+fl)- kzmlzp+a - ZP+PI

11
(6)

Fxafl = {FOtlXa,Xp+ F,8,a+XaXp + F;8X=,,a+XP}8Y=, Yp8z=,z@

Fyap =
{

;8Y,+C, Y,+8 + :a.h+yp+a,y,+$

+ b
8 YP+.. Tb+YP+@

}
8 8

xP+.. xP+p zP+m. zP+@”
(7)

In (6), Sa($) = sin(~)/~ is the sampling function, and in

(7)

‘O=+sa(kx$)+isa’(kx%)

F,=&[”’p(jkxi)-’xp(j’x%)~a(kx%)l

and F~ is the complex conjugate of F1.

The set of equations (5) can be represented as

Z]=o (8)

where

z=

and

[
F= IX1,1X2, . . . ,Ixppy,, Iy2, ”””

‘ ~YQl” (10)
For (8) to have a nontrivial solution, it is necessary that

det Z=O. (11)

This is the dispersion equation which relates kX to ~. Once

kX has been determined, it is substituted back into the Z

matrix so that the eigenvector ~ and hence the current

density ~ can be found. Numerical examples are discussed

in Section VI,

IV. CHARACTERISTIC IMPEDANCE

The presence of apertures and/or resistance precludes

the possibility of TEM propagation in the structure of Fig.

1. However, at the frequencies associated with the signal

waveforms found in such computer structures (kodl <0. 1),

the wave supported will be nearly TEM. As such, only a

small component of magnetic field exists in the direction of

propagation, i.e., the line integral of the electric field

between the signal line and ground plane in any plane

x = constant is nearly independent of path. We can there-

fore define a potential difference V(x) between the signal

line and ground plane as

V(x) =–]%z(x,y,z)dz (12)
o

where E, is the z component of the electric field. Since the

transmission lines carry signals between computer circuits,

and since these circuits are characterized by their

current–voltage dependencies, it is convenient to define the

characteristic impedance Z, as

z~ = v(x)/lT(x) (13)

where the total current that flows through the signal lhie 1~

is given by

IT=~d’J,x(z=h)dy. (14)

In the region which excludes the conductors, the diver-

gence of the electric field is zero so that E,, EX, and EY are

related by

(15)

If we substitute the generalized form of (2) into (15), and

integrate both sides of (15) with respect to z, realizing that

E, has no component constant in z, we obtain E,. The

result, after appropriate interchanges in the orders of sum-
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mation, integration, and differentiation is

{
m ~ IXasgn(z - .za) ~ GX.~a

‘z= 2ko ~=,
n,m

-exp(– jkznmlz – Zal)

Q

+ ~ lYasgn(z – zP+a ) ~ Gy8ma
~=i n,m

).exp(– jk,.~lz – ZP+.l) exp(– jk,x) (16)

where

G
{[

.“~m = kX.%X~~exp j ~(W-x)+y(Ya-Y)
1 1}

G
([

27m
~n.a = kY.%Y~wexp j —~, (xP+a–~)

+ 27rm

1}
-@ YP+a - Y) (17)

and sgn(~) is defined as

{

1, g>o
Sgn(g)= _l

> [<0.

We now substitute (1) into (14), (16) into (12), and perform

the @tegrations indicated. From (13) we find

[
3 5L(%,=a-L,za)‘0=j2ko ~=1

. ~ Gxnma1‘exp~-jkznmh)
n,m znm

Q

+ Z ‘ya( ‘O, 2P+= - dh,zp+,)
~=1

l–exp(– jkz~~h)
. ~ GYn~a k

n,m znm 1

[ 1

–1

o Trj i h%.=q~~x - A.) . (18)
&=l

In (18), lx. and lY. are the current coefficients obtained

through solving the eigenvalue problem (8), and q, is the

triangle function previously defined.

V. MODE COUPLING BETWEEN ADJACENT SIGNAL

LINES

It is well known that a system composed of two coupled
waveguides supports two distinct propagation modes [9]. A

wave traveling along one guide will transfer power to the

other guide and may excite positively and negatively prop-

agating waves. Contradirectional coupling [ 10], involves thp

transfer of power between modes traveling in opposite

directions. With respect to the strocture of Fig. 1, this

<

d Plme

Fig. 3. Gaiding structure used in determining the side-by-side coupling.
(a) Isometric view. (b) Unit cell.

coupling would not significantly differ if the apertures are

merged in the x direction, so that the ground plane be-

comes an array of x-directed strips and-the

line becomes TEM. Since contradirectional

TEM structures has already been considered

focus on codirectional coupling [10], ‘which

transfer of power between modes traveling

direction. This type of coupling is absent in

transmission

coupling in

[11], we will

involves the

in the same

TEM struc-

tures.

For two identical waveguides, the power is periodically

exchanged between the waveguides and this exchange oc-

curs over a distance 1 [9] given by

AkXl=~ (19)

where AkX is the difference between the coupled system’s

two propagation constants. In connection with the struc-

ture of Fig. 1, these two constants are associated with

waves having even and odd symmetry about the plane

midway between the lines,

A. Side-by-Side Coupling

If we modify the structure of Fig. 1 by removing every

third line, the coupling between nonadjacent lines will be

negligible for small h /d2. Then, the wave in the unit cell

will be almost identical to that in a structure having only

two adjacent lines. Fig. 3 shows the resulting structure and

unit cell.

To get the coupling length 1, we find even-mode (where

the signal lines carry current in the same direction) and

odd-mode (where the lines carry current in opposite direc-

tions) solutions to (11), and then substitute the resulting

difference in propagation constants Akx into (19).

In odd-mode propagation, symmetry allows a perfectly

conducting plane to be placed equally distant between the
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Fig. 4. Guiding structure used in determining the through-aperture cou-

pling. (a) Isometric view. (b) Unit cell.

signal lines without disturbing the field. This plane carries

some current that would otherwise flow in the ground

plane, decreasing the perturbation caused by the apertures,

and causing the wave to be more nearly TEM. Thus, the

odd-mode propagation constant will be closer to kO than

the even-mode constant.

B. Through-Aperture Coupling

We now remove every other line in the structure of Fig.

1, and then place another identical signal-line array a

distance h below the ground plane (Fig. 4). As long as

h /d2 is sufficiently small, the wave supported within the

unit cell closely resembles that supported by two signal

lines situated on opposite sides of the ground plane.

To find 1for this through-aperture coupling structure, we

again find even- and odd-mode solutions to (11) and

substitute the resulting AkX into (19). By symmetry, no

current flows in the ground plane when the signal lines

carry oppositely directed currents. The resulting mode is

pure TEM since the ground plane can be removed without

disturbing the field. Thus, the odd-mode propagation con-

stant in perfectly conducting structures is k., and need not
be calculated through (1 1).

VI. NUMERICAL RESULTS

In solving the eigenvalue problem (8), the solution kx to

the determinant equation (11) is first found by a Newton

search [12]. Starting with some initial guess k:), we iterate

according to

k(~+l)=k(i).– ‘et’z
x ‘ f’(z)

(20)

where the superscript i refers to the i th value of the

parameter, and j’(Z) is the finite difference approximation

of the determinant’s derivative at k:. The iteration is

Fig. 5. Current distribution in the signaf line and ground plane over haff
the unit cell of the guiding structure of Fig. 1. (R. = 0, w = 0.25 cm,
k= 0.5cm, a= b= 0.75cm, d1=d2=l.0cm, kO=O.OOOlcm-l, N=8,
M= 16.)

terminated when the difference between k:) and k:+ 1, is

sufficiently small—generally 10-5 ko. When solving (8)

for the eigenvector, the first element of ~, lX,, was assumed

to have unit amplitude and zero phase. In obtaining the Z

matrix (9), we truncate the infinite series in (6) at In I < N

and Imls M where

N=+, M=?.
a

(21)

This choice is adequate to give accurate results. Because

the Newton search requires repeated evaluation of the Z

matrix, the choice of N and M has a major influence on the

overall computation time.

A. Current Distribution

Fig. 5 shows the current distribution in the structure of

Fig. 1, when R,= O, h = 0.5 cm, w =0.25 cm, a= b= 0.75

cm, d, = d2 = 1.0 cm, r= = 0.125 cm, Tb = 0.0625 cm, and

k.= 0.0001 cm- 1. By symmetry, identical current exists in

each half of the unit cell, so only the shaded half is

considered.

For this case, the currents are almost entirely real. The

x-directed currents in the signal line and ground plane flow

in opposite directions. Current crowds along the signal-line

edge, displaying the well-known edge effect for perfect

conductors, and flows around the aperture in the ground

plane. The y-directed current is nearly zero in both the
signal line and the ground plane channel defined by

the signal-line’s projection onto that plane. If we convert

the current density into a current by multiplying by r~ for

x-directed currents and by ~. for y-directed currents, we

find the net current which flows into any T=rb patch to be

negligible. All these results are consistent with current flow

in parallel plate type TEM transmission Iines.

Fig. 6 gives the current distribution for the same struc-

ture at kO = 0.0001 cm-1, except the sheet resistance is 0.25

fl/u. For such a high sheet resistance and low frequency,

the current flow is essentially determined by the resistance,

and again is almost entirely real. The x-directed current is
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Fig. 6. Current distribution in the signafline and ground plane over half
the unit cell of the guiding structure of Fig. 1. (R, = 0.25 t2/u,
w= O.25cm, h =0.5 cm, a= b= O.75 cm, dl = d2=l.0cm, kO=0.0001
cm-’, N= 8, M=16.)

Fig. 7. Guiding structure of Fig. 1 when every other
removed.(a) Isometric view. (b) Unit cell.

uniform across the signal line. The current in

signaf line is

the ground
plane is more confined to the channel, not spreading out as

much into the conductor connecting the channels of adj sc-

ent unit cells (called cross-links). For example, the mini-

mum current density in the cross-link is 0.17 when R, = O,

but only 0.01 when R.= 0.25 Q/u.

B. Propagation Characteristics

To determine the propagation characteristics of an iso-

lated signal line above the ground plane, we consider a

modified structure where every other signal line has been
removed (Fig. 7(a)). The corresponding unit cell (Fig. 7(b))

contains one signal line but two apertures so that dz is

doubled.

Fig. 8 shows the dispersion curve when w, h, a, b, r., Tb,

and d, are as previously given, but R, = O and dz = 2.0 cm.

30
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Fig. 8. Wave number versuspropagation constant for the guiding struc-
ture of Fig. 7. (R, = O, w = 0.25 cm, h = 0.5 cm, a = b = 0.75 cm,
dl = 1.0cm, d2 = 2.0 cm, r. = 0.125cm, rb = 0.0625cm, N = 8, M = 32.)

,.4 , 0–3 ,.–2 ,.–l

k. (cm–l)

Fig. 9. Real and imaginary parts of .kXas a function of k. for the
guiding structure of Fig. 7. (w= 0.25 cm, h = 0.5 cm, a = b = 0.75 cm,
d,= 1.0cm, d2 = 2.0 cm, ~a= 0.125cm, 7~= 0.0625cm, N = 8, M = 32.)

The ratio of group velocity Og to the speed of light in the

dielectric c is given by the curve’s slope. For small kx, og/c

is a constant 0.9606, but decreases to zero for kxdl = m, as

expected for periodic structures.

Fig. 9 gives the real and imaginary parts of kx as a

function of k. when R, is 0.25 $2/0. For comparison, we

also plot the propagation constant calculated from the

well-known formula valid for a resistive transmission line

having lossless dielectric

kx = [(~L – jR)tOC]l/2. (22)

In (22), L and C, which are per unit length values of

capacitance and inductance, are taken to be those values

which give the same low-frequency propagation constant

(kx = 1.0352 ko) and characteristic impedance (216 Q)

found for the case R, = O; R, the per unit length resistance,

is taken to be the dc resistance in the path that includes the

signal line and ground plane. The values for L and C are

7.44 nh/cm and 0,16 pf/cm, respectively, while R is ap-

proximated as 1.5 Q/cm. As seen from the figure, (22)

accurately gives the low frequency propagation constant

for resistive conductors.
The characteristic impedance, calculated at the center of

the signal line using (18), is plotted versus k. in Fig. 10 for

R.= O and 0.25 Q/u. For comparison, we also plot the

equation

Z.= [(R + jUL)\j@]l’2 (23)
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Fig. 10. Characteristic impedanceversuskOfor the guiding structure of
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Fig. 11. Characteristic impedance as a function of signal line width-to-
height ratio w/h (l?. = O, k. = 0.001cm- l).

where R, L, and C have already been calculated. As seen

from Fig. 10, (23) accurately describes the impedance for

kod, <0.1.

The dependence of the impedance at low frequency on

the aspect ratio w/h is shown in Fig. 11. The curves are

obtained by holding w fixed at 0.25 cm and varying h. For

comparison, the impedance of an isolated signal line above

a ground plane having no apertures, and that of an isolated

signal line a height h above a second such line have been

plotted. The impedance for this first nonperiodic structure

is given in [13], while the impedance for the second is

obtained from [13] using image theory. As expected, the

impedance of the periodic structure falls between the other

two curves. However, as w/h falls below 0.25, the coupling

between adjacent signal lines significantly influences ZO,

and the curve displays a sharp up-turn.

The influence of adjacent lines can also be observed by

replacing the lines absent from the structure of Fig. 7.

Although the resulting dispersion and impedance curves

display similar behavior to those in Fig. 8 and Fig. 9, the

group velocity and impedance when R,= O and kodl <<1

TABLE I
NORMALIZED COUPLING LENGTH AT kO = 0.001cm-’
I ,. r,. ,,. ,. .- 1‘- Ike (Odd

Mod,) A kxlko I/h. 1Coupling ::;,’ ‘“”” ‘;oye)I ““

. .. . . . . . .. . I J.) I
, ,,r”u,r,.Apw,ure , ,, I

............ ,. 10420 10039 00381 1312

. . . . . . . “..–. –. ,b) , ~853 , moo ~ ~853 , 66

R,= 0,w=0.25cm, fi=0.5cm, a= b= 0,75cm, d1=l.0cm,7. =O.l25
cm, Tb = 0.0625 cm, N = 8.

(a) Unit cell of Fig. 3. (d2 = 3.0 cm, &f = 48).
(b) Unit cell of Fig. 4. (d, = 2.0 cm, J4 = 32).

are 0.9505 c and 290 Q?,respectively, as opposed to 0.9606 c

and 216 Q for the structure of Fig. 7.

In order to determine the sensitivity of the results to the

size of the subsections, T-. and r~ were reduced by a factor

of two (increasing the corresponding number of current

elements, P + Q, by more than a factor of four). For the

structure considered in Fig. 5, with h varied between 0.1

and 1.0 cm, and with N and M still given by (21), we

observed that both kx and ZO decrease, but by less than 0.3

percent and 4.0 percent, respectively. Thus, the subsection

size used for the structures considered is adequate to give

accurate results.

It is instructive to determine the changes in capacitance

and inductance when the perforated ground plane becomes

unperforated. To do this, we modify the structure consid-

ered in Fig. 8 so that a = 0.0 cm and use R, = O, r. = 1.0

cm, N = O, and M = 32. The values of L and C are then

calculated from the resulting values of kx and Zo. We find

at low frequency that the capacitance increases by 6.3

percent but the inductance decreases by 12.2 percent. Thus,

the perforated ground plane acts more like an unperforated

plane electrostatically than it does magnetostatically.

C. Coupling Between Adjacent Signal Lines

The side-by-side and through-aperture coupling lengths

are calculated using the structures of Fig. 3 and Fig. 4 for

R,=O, h=O.5 cm, w= O.25 cm, a= b= O.75 cm, dl=l.O

cm, r~ = 0.125 cm, Tb = 0.0625 cm, and k. = 0.001 cm– 1.
The even- and odd-mode propagation constants, shown

normalized in Table I, increase slowly with k. so that they

are valid for kodl <0.1. The normalized coupling length

for the side-by-side case is 13.12 AO, but only 7.66 AO for

the through-aperture case. The greater through-aperture

coupling (smaller l/AO ) corresponds to a greater difference

between capacitive and inductive coupling coefficients, kc

and k~, that exist in the structure [11]. Though not true for

all geometries, the cross-link segments of the ground plane

substantially reduce the capacitive coupling between signal

lines separated by the ground plane, but only modestly

decrease the inductive coupling and thus yield the shorter

value of 1.

VII. EXTENSION OF THE METHOD THROUGH

SCALING

In the examples given, all the dimensions were in the

centimeter range, while the relative dielectric constant was

unity. However, in computer applications, the transmission

line dimensions may be in the submillimeter range, and the
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dielectric constant may be several times that of free space.

Appropriate scaling can be used to extend the presented

results to more realistic structures.

If every dimension in the structure scales by the same

factor, and if the relative dielectric constant takes on the

value c,, the dispersion relation represented by (5) can be

expressed as

fl(~om, Q4)+iawwl) =o
while the characteristic impedance can be expressed as

where ~1, ~z, and ~~ are functions of the given variables.

Thus, the dispersion relation will remain satisfied and the

impedance will vary inversely with & if kxdl, ko~dl,

and fiR, are kept constant.

VIII. CONCLUSIONS

A method employing a rooftop current approximation

was used to find the propagation characteristics and cur-

rent distribution in transmission-line structures consisting

of a signal line above a periodically perforated ground

plane in a homogeneous dielectric. For perfect conductors

at low frequency (kodl < 1.0), the dispersion is small and

the wave velocity is just a few percent less than c. For finite

resistance structures at frequencies such that kodl <0.1,

the propagation and attenuation constants, and the imped-

ance, are the same as those of a uniform transmission line

having constant values of R, L, and C.

Codirectionrd coupling between signal lines was consid-

ered. This coupling was found to be nearly twice as strong

for signal lines situated on opposite sides of the ground

plane (coupling length 7.66 A.) as for adjacent signal lines

situated on the same side of the ground plane (coupling

length 13.12 Ao). These results, however, are valid only for

frequencies such that kodl <0.1 and for the specific geom-

etry considered.

Although we have considered only square apertures, the

method applies to any shape aperture for which the con-

ductor can be subdivided into rectangular subsections.

Apertures with curved boundaries, such as circles, would

have to be approximated by steps. Finally, the approach

used here can easily be extended to handle additional

ground planes.
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